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Abstract- The realization of the linear 
defuzzif ied output of the fuzzy controller is 
discussed in this paper. Using the mixed fuzzy 
logics to evaluate the fuzzy control rule, we 
show that the defuzzified output by 
appropriate choice of each component can be 

precisely equivalent to a linear function of 
the inputs to the fuzzy controller. 

I. INTRODUCTION 

There are some papers discussing the output 
of fuzzy controller in a few situations. For 
the case of two inputs (41, the authors 
defined a linear fuzzy controller with two 

fuzzy control inputs and evaluated the fuzzy 
control rules using different kinds of fuzzy 
logic operators. The camparison of the 
consequences for choice of Zadeh, probability 
and Lukasiewicz logic has been made. They 
investigated the output of this fuzzy 
controller for certain t-norm and t-conorm 
operators, but only the special case of three 
fuzzy numbers employed to fuzzify each 
controller input is discussed. 

In this paper, the realization of the linear 
defuzzified output of the fuzzy controller by 
appropriate choice of each component of the 
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fuzzy controller is discussed. This paper is 
organized as follows: The fuzzy controller 
with simplified fuzzy reasoning method is 
described in Section 11. The linear 
defuzzif ied output of the fuzzy controller is 
discussed in Section 111. In there, arbitrary 
numbers of triangular fuzzy numbers are 
employed to fuzzify the linguistic variables 

in fuzzy control rules. Using three mixed 

fuzzy logics, we show that it can be precisely 
equivalent to a linear function of all the 
inputs to the fuzzy controller. Finally, we 
make a brief conclusion in Section IV. 

11. STATES DESCRIPTIONS 

The fuzzy control rules with two input fuzzy 
variables is described by 

R ( l , J ) :  If x is Al and y is B 
J 

then U is Cfcl,J) ie1, JEJ (1) 

where x, y, U stand for input or outpu:. 
linguistic variables and I={-m, - - * ,  m), 

J={-n, --.,n) denote the index sets. Al, Bj, 
are fuzzy sets characterized by 

membership functions Al(xl:X+[O, 11, Bj(y): 
Y+[O, 11, Cf(I,,)(u):U+[O, 11 corresponding to 
the universe discourse of X, Y. U, 

cf(l,,) 



respectively. f (1, J) denotes a constant index 
function which decides a linguistic value of 
U. 

The fuzzy implication in (11 can be 
translated into a three dimensional relation R 

defined on the Cartesian product of universe 
XxYxU as 

In there, the (i,J)-th rule can be described 

by a fuzzy relation R on a universe of 
XxYxU as 

( l e ] )  

= (Al and B 1 + Cf(l,J, 
R ( l ,  J )  1 

and its membership function can be expressed 

by 
(x,y,u) = U[Ai(x), BJ(y), Cr(l,J,(U)] 

R ( i ,  J l  

where T denotes the t-norm operator [11. So 
the membership function of the 

relation R is 

R(x,y,u) = C R(l,J,(x,y,u) 
ja: 

overall fuzzy 

‘f(l, J) 

where C denotes the t-conorm operator. 
If the inputs x and y take the fuzzy sets A’ 

and B’, respectively, the output fuzzy set C’ 
can be calculated from antecedents A’ ,  B’ and 
fuzzy relation R by compositional rule of 
inferences as follows: 

C’ = (A’ and B’ ) O R  

where 0 denotes the sup-t-norm composition. 
Explicitly, the membership function of the 
consequence C’ is 

Theoretical and experimental studies have 
indicated that some t-operators may work 
better than others in some situations [ll. In 
this paper, three t-norm and one t-conorm 
operators for evaluation of the fuzzy control 

rules are considered: 

(a) Zadeh AND operator: 

D(a,b) = ZAND(a,b) = min(a,b) 

(b) Probability AND operator: 

D(a,b) = PAND(a,b) = a-b 

(c) Lukasiewicz AND operator: 

U(a, b) = LAND(a, b) = max(0, (a+b)-l) 

(d) Lukasiewicz OR operator: 

C(a,b) = LOR(a,b) = mln(1, a+b) 

where a and b are grades of membership of an 
object in fuzzy sets, We can represent C’(u) 

as 

In actual applications the inputs of the 
controller are some crisp datas. It can be 
realized by a process called fuzzification, 
which simply considers the input fuzzy sets A’ 

and B’ to be singletons, i.e., 
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* 
1 i f x = x  

0 otherwise 
A’ (XI = { 

and * 
1 i f y = y  

B’(y) = { 
0 otherwise 

so that 

sup T[A’(x), Al(x)l = Al(x 1 
X E X  

and 

Theref ore 

We may defuzzify the output fuzzy set C’ into 
a scalar output by computing its fuzzy 
centroid. In this paper, we consider a simple 

form of output fuzzy sets, where the output 
are considered as distlnct fuzzy sets C 

output fuzzy singletons [21, i.e., 
f ( I ,  J )  

1 if U - f(1.j) 
(U) = { 

0 otherwise ‘ f ( 1 ,  J)  

Theref ore 

C’(U1 = { 
0 otherwlse 

So the representative point of C’ takes the 
form 

m n  

We find that the defuzzified output is 
concerned directly with the definition of 
linguistic membership functions and the type 

of t-norm operators which are discussed below. 

111. MAIN RESULTS 

If the triangular fuzzy number is chosen for 
each linguistic variable as: 

* 
Given a value for x in [-m,ml and a value * * * 

for y in [-n,nl, we can represent x and y 

as 

( 6 )  

where i’ and j’ are integers. We know that 
only two of the membership functions Al(x 1, 
B (y 1 may be positive and that is when i=i’, 
i’+l and J=j’, j’+l. We obtain 

* 
* 

I 

1-s, i=i’ 
Al(i’+s) = s, i=i’+l (OssCl) (8) 

0, otherwise 

1-P, j=J’ 
P, J=j’+l (Ospcl) ( 9 )  

1 
0. otherwise 

Therefore there are only four rules fired in 

the set of complete control rules: 
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J’ 
If x is Al, and y is B R~lB,Js): 

then U is f(i’,J’) 

If x is AI, and y is BJ,+l 
then U is f(i’,j’+l) 

R ( l ’ ,  J *  +l) : 

J’  
If x is and y is B 

then U is f(i’+l,J’) 
R ( l , + l ,  1’) : 

If x is and Y is BJ,+l R(I,+l, J*+l)‘ 
then U is f(i’+l,j’+l) 

The defuzzified algorithm (3) can be 

represented by 

Now, we have the following theorem: 

Theorem 1: 
Suppose the triangular fuzzy numbers (4 )  and 

( 5 )  are used to define the linguistic 

variables x and y in the fuzzy controller with 
the rule base: 

RtI,J): If x is AI and y is B 
J 

then U is f(1, j)=a.i+b.j, 
Let 

* * .  
For any inputs x =i’+s and y =J’+p, 

ieI, jeJ  

(11) 

(12) 

(13) 

(14) 

if we use 
Vi, V2, U3 and U4 operators for the AND 

clauses of rule R(i’,j’), R(i’+l,J’), 
R(i’, j’+l) and R(i’+l, j’+l), respectively to 

W W w such that 
00’ 10’ 01’ 11 determine w 

w +w +w +w =1 and a.wlo+b-wol+(a+b).w = 
a.s+b.p, then the defuzzified output is 

11 00 10 01 11 

* * 
U = a.x + bey 

Proof: * * 
1 

For x =i’+s and y =j’+p, If we use f 

operator for the AND clauses of rule R(i’,j’), 
U operator for the AND clauses of rules 
R ( i ’ + l ,  j’ 1, U3 operator for the AND clauses of 
rules R(i’, j’+l), and TI operator for the AND 

clauses of rule R(l’+l,j’+l), the defuzzified 

2 

output (10) is 

a-wlo+b.w 01 +(a+b).w 11 
U = a.1’ + b.j’ + w +w +w +w 

00 10 01 1 1  

SO If woo + w + w + w = 1 and 
a*w +b.w +(a+b).w =a*s+b*p, the defuzzlfied 
output becomes 

10 01 11 

10 01 11 

* * 
U = a-x + b*y 

This completes the proof. 

Remark 1: 
When there are some rules with 

consequence f ( 1, j 1, we can combine 

Q. E. D. 

the same 

they with 
one and the formula (3) can be rewritted by 

t 9 LOR DIAl(x * 1, B,(Y 11 

LOR BIAl(x * 1, B,(Y * 11 

Z 
t=f ( 1 ,  J )  

Z 

t 
l E I ,  JEJ U =  

t=f(l, J )  t 
I E I ,  JEJ 

Under this situation, we can also derive the 
same result of Theorem 1. 
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From (111, (121, (131 and (141, we see that 
w and w are 

00’ 10, 01 
these values w 

determined by the choice of the logical AND 
operators Kl, K2, K3 and TI, respectively. 
Basded on this, we now evaluate the rules 
using the following appropriate t-norm 
operators such that w +w +w +w =1 and 
a.wlo+b*wol+(a+b) -w =a.s+b.p. First, we use 

the Zadeh AND logic for the U1 and U4 
operators and the Lukasiewicz AND logic for 
the U2 and K3 operators. Next, we use 

Lukasiewicz AND logic for the K1 and K4 
operators and Zadeh AND logic for the U2 and 
T operators. Finally, we use probability AND 
logic for the U operators of the fired rules. 
We have the following theorem: 

Theorem 2: 

11 
W 

00 10 01 11 

11 

3 

Suppose the triangular fuzzy numbers (4) and 
( 5 )  are used to define the linguistic 
variables x and y in the fuzzy controller with 

the rule base: 

Rcip,): If x is A, and y is B 

then U is a*i+b.j, i d ,  jaJ. 
i 

* ID 
For any inputs x =is+s and y =jD+p, if we use 
TI, U2, K3 and U4 operators for the AND 
clauses of rule R ( i ’  , j9 1, R(i9+1,j9 1, 
R(lDp jD+l) and R(i’+l,j’+l), respectively and 
the following three cases of the appropriate 
operators are chosen as 

(Case 1): Ul=K4=ZAND, 0 =T =LAND, 

(Case 2): V1=U4=LAND, U =U =zAND, and 

(Case 3): U1=K =T =PAND, 

2 3  

2 3  

2 3  

then the defuzzified output is 
* !8 

U = a.x + b-y 

Proof: 
Substituting the results of (81 and ( 9 )  into 

the three cases, we have: 
In Case 1, since the logic operators are 

chosed as Tl=U4=ZAND and T2=T3=MD, from 
(111, (121, (131 and (141, we obtain 

1-s if scp 

s-p if scp 
0 if scp 
0 if srp 

01 p-s if scp 

w = min(l-s, 1-p) = { 1-p if scp 00 

w = max(0, s-p1 = { 
10 

w = max(0, p-s) = { 

p if szp 
w = min(s,p) = ( if scp 

In Case 2, since the operators are chosed as 
Ul=U4=LAND and K2=T3=ZAND, from (111, (121, 
(13) and (141, we get 

11 

(15) 

(161 

(171 

(18) 

w = LAND(l-s,l-p) = max(0, 1-s-p) 

w = ZAND(s,l-p) = min(s,l-p) 

w = ZAND(1-s,p) = min(l-s,p) 

w = LAND(s,p) = max(0, s+p-1) 

00 

10 

01 

11 

From Figure 1, we can partition the unit 

square into eight regions as follows: 
(a) Os 1-ps ss 1-ss ps 1, 
(b) Os 1-ps 1-ss SS ps 1, 

(cl os 1-ss 1-ps ps ss 1, 
(d) Os 1-ss ps 1-ps ss 1, 
(e1 OS ps 1-ss ss 1-ps 1, 
(f) os ps ss 1-ss 1-ps 1. 
(g) 0s ss ps 1-ps 1-sr 1, 
(h1 0s ss 1-ps ps l-sr 1, 

From (151, (161, (171, (18) we can easily list 
the values of w ooD w wol and w for these 
eight regions as follows: 

11 

<Regions a, b, c, d> 
Woo’O# wIo=l-p’ w 01 =1-s, w 11 =s+p-1; 

woo=l-s-p, wlO=s, wol=p, wll=o. 

<Regions e, f, g, h7 
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11 

, O )  ). 
Figure 1. Partition of the unit square 

into eight regions. 

So we obtain 
0 if S+Phl 

if s+p<l 

I-p if s+pal 

I -s  if s+prl 

P if s+p<l 
s+p-1 if s+pal 

00 = { 1-s-p W 

w 10 if s+p<l 

w = {  
10 

w 11 = (  if s+p<l 

In Case 3, since the operators are chosed as 
T1=T =T =U =PAND, from (111, (121, (13) and 

(141, we get 
2 3 4  

We see w ~ ,  wl0, wol and wll in the three 
cases all satisfy that' w +U +U +U =l and 
a-wlo+b.wol+(a+b)*w =a*s+b*p. From Theorem 1, 
we have the result. Q. E. D. 

00 10 01 11 

11 

IV. Conclusion 

In this paper, the fuzzy controller with a 

simplified fuzzy reasoning method is 
considered. We have shown that the defuzzified 
output of the fuzzy controller can be 
precisely equivalent to a linear function of 
all the inputs to the fuzzy controller by 
using three mixed fuzzy operators. In there, 

arbitrary numbers of triangular fuzzy numbers 
are employed to fuzzify the linguistic 
variables in fuzzy control rules which 
generalize the investigation only on the the 
special number of fuzzy numbers for each fuzzy 
input [3,4,61. The result also indicates that 
the linear nonfuzzy controllers are the 
special cases of the fuzzy controllers. 
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